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We investigate a directed polymer in random media with an attractive defect at the center of the one-
dimensional substrate. Without the defect, the end to end distance �x of the polymer follows �x� t1/z, with
z=3 /2 and t is the polymer length. When the defect strength � is weak, its contribution to �x is negligible. If
���c, then �x approaches a finite value �xsat��� in large t limit, and we find �xsat���−�c�−�, with ��3.0.
Such transition is related to the queuing phenomena of the asymmetric simple exclusion process. The polymer
energy fluctuation is also discussed.
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I. INTRODUCTION

A traffic jam commonly occurring in a bottleneck, behind
slow moving trucks on single-lane highways, or near a road
under construction is a typical example of queuing phenom-
ena. Several attempts such as the asymmetric simple exclu-
sion process �ASEP� �1–7� have been introduced to explain
the relation between the queuing phenomena and a nonequi-
librium driven dynamic process. In the ASEP with a slow
bond, most particles jump into a vacant neighboring site in
one direction with hopping probability one, and a fixed slow
bond of hopping rate r, with 0�r�1, plays a role of the
bottleneck. Lots of studies have suggested that the critical
hopping rate is one, rc=1, i.e., the slow bond always gives
rise to queuing phenomena �8–15�. However, some recent
studies on the ASEP with a slow bond insist that a queuing
transition of a jamming state exists at rc�1. The overall flux
passing through the slow bond is rarely influenced if the
defect strength is not strong enough �16–20�.

The ASEP can be mapped to the surface roughening prob-
lem of crystal growth such as the body-centered solid-on-
solid interface model �21�, where the height difference be-
tween the nearest neighbors is restricted by �1. An increase
�decrease� in surface height is equivalent to the presence �ab-
sence� of a particle in the ASEP. Both models belong to the
Kardar-Parisi-Zhang �KPZ� universality class �22�.

The directed polymer in random media �DPRM� �23,24�
also has a close relation with the ASEP. An attractive line
defect in two-dimensional DPRM corresponds to the slow
bond in the ASEP. Here, we study the DPRM with an attrac-
tive defect in both a triangular structure and a square struc-
ture and measure various physical quantities to understand
the queuing transition.

The Hamiltonian of DPRM with a defect at x=0 is given
as

H =� dt��	dx

dt

2

+ 	�x,t� − ���x�� , �1�

where x is the d−1 dimensional transverse vector, t is the
polymer length perpendicular to the substrate, and −���x� is

a time-independent defect at x=0, where � controls the
strength of the defect. There are three competing terms: a
bending energy � forcing the polymer straight against a
transverse bending, the random potential 	�x , t� assigned to
each point �x , t� preferring the polymer to be deformed
through the minimum potentials, and the attractive defect at
x=0 forcing the polymer return to the origin. This defect
plays the same role as the slow bond in the ASEP. The ran-
dom potential 	�x , t� is a white noise satisfying

�	�x,t�	�x�,t��
 = 2D��t − t���d−1�x − x�� . �2�

The partition function Z�x , t� for the polymer, starting
from �0,0�, and ending at �x , t�, can be written as the path
integral �23�

Z�x,t� = �
�0,0�

�x,t�

Dx��t�� exp�−
1

T
�

0

t

dt���	dx�

dt�

2

+ 	�x�,t�� − ���x���� , �3�

and it satisfies

�Z�x,t�
�t

= � T

2�
�2 −

1

T
	�x,t� +

�

T
��x��Z�x,t� , �4�

where T is the temperature. The related free energy is defined
as

F�x,t� � − T ln Z�x,t� . �5�

Then, with �=0, the free energy satisfies the KPZ equation
�22�

�F�x,t�
�t

= 
�2F�x,t� + ���F�x,t��2 + ��x,t� , �6�

where ��x , t� is a random noise proportional to 	�x , t�. Thus,
the free energy F�x , t� of the DPRM plays the same role as
the height variable h�x , t� of the growth model �24�.

II. MODEL AND NUMERICAL RESULTS

At zero temperature the entropy is ignored and then the
problem in Eq. �1� becomes much simplified by finding the*jmkim@ssu.ac.kr
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optimal path and its energy E�x , t� among all the paths arriv-
ing at �x , t�. The initial energy E�x ,0�=0 is given at t=0. A
continuous random number between 0 and 1 with uniform
distribution is assigned for the randomness 	�x , t� on a dis-
crete structure. In addition, the attractive defect potential −�
is given at the center site x=0.

First we consider a polymer on a triangular structure. The
polymer starts from x=0, and its path is restricted by �x�t�
−x�t+1��=0 or 1. There is a bending energy � against a
transverse jump �x�t�−x�t+1��=1. The minimum energy
E�x , t� for the polymer ending at �x , t� can be obtained recur-
sively �24� in d=1+1,

E�x,t + 1� = min�E�x,t� + 	�x,t� − ��x,0,E�x − 1,t�

+ 	�x − 1,t� + � − ��x−1,0,E�x + 1,t�

+ 	�x + 1,t� + � − ��x+1,0� , �7�

where min�A ,B ,C� takes the minimum value among A, B,
and C. We shall write d=1+1 to indicate that there is one
transverse and one longitudinal direction. Following Eq. �7�
the polymer energy at each site is updated in parallel.

We measure �x, which is the root mean square of the end
to end distance of the polymer as a function of t. In general
it increases with t. Without the defect, �x follows

�x � t1/z, �8�

with z=3 /2 �23–25�. The optimal path is affected by the
strength of the defect � as shown in Fig. 1�a�. Its contribution
to �x seems to be negligible for small �, where �x still
shows the power-law behavior with z=3 /2. For large �, �x
increases with t at initial stage and then approaches an
asymptotic value �xsat in large t limit. Actually �xsat depends
on �. Due to the limitation of current computing power, it is
hard to get �xsat for small value of ��0.035. We assume that
�xsat diverges as � approaches �c following a scaling law

�xsat � �� − �c�−�, �9�

where �c is the critical defect strength. The log-log plot of
�xsat against ��−�c� for various values of �c is given in Fig.
1�b�. The most straight line is obtained for �c=0.021 with

�=3.0. It means that �xsat diverges at �=�c. We would ex-
pect �x�t�� t2/3 for ���c.

Since the polymer energy E�t� increases with t, we define

the mean velocity of energy as v�� , t���Ē�� , t� /�t, which is
the average energy density per unit length. It is related to the
flux of the ASEP. The mean velocity depends on both the
defect intensity � and the polymer length t. It approaches a
saturation velocity vs��� in large t limit. We define the veloc-
ity difference due to the defect as

�v��� � vs�0� − vs��� , �10�

where vs�0� is the saturation velocity of the energy with �
=0. If � is less than �c actually, �v approaches zero with t.
Above �c, however, the defect site attracts the polymer
strongly so that �v becomes finite. We would expect

�v � �0 if � � �c

�� − �c�
 otherwise.
� �11�

We measure �v as a function of � and plot �v as a function
of ��−�c� for various values of �c as shown in Fig. 2�a�. The
best power-law behavior is obtained from �c=0.021 in good
agreement with the critical value obtained from �x. The
measured value of 
 is near 2.76.

In analogy with the surface problem, we also consider a
square structure of system size L with a periodic boundary
condition on the lateral direction. The mean velocity
v�L ,� , t� depends on the system size L also. At the critical
point �c=0.021, the velocity difference is expected to follow

�v��c� � L−x�. �12�

Figure 2�b� shows �v�L ,�c� for various system sizes in log-
log plot, where the dashed line shows a power-law behavior
very well with x�=0.82�2�. From both Eqs. �11� and �12�,
one can guess a scaling form �19�

�v�L,�� � L−x�f�Ly�� − �c�� , �13�

where f�u� is u
 for u�0 and 0 for u�0 with y=x� /
. In
Fig. 3 all the scaled data for various system sizes collapse
very well with x�=0.82, y=0.297, and �c=0.021. It seems
that �v follow the scaling behavior of Eq. �13�. For ���c,
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FIG. 1. �a� �x�� , t� as a function of t on a discrete triangular structure with �=0.00, 0.01, 0.02, 0.03, 0.035, 0.04, 0.05, 0.06, 0.07, 0.08,
and 0.09 from top to bottom. The data points up to t=107 are for �=0.035. The dashed line has the slope of 2/3, corresponding to 1 /z of the
DPRM without defect. �b� �xsat��� as a function of �−�c for arbitrary critical values �c=0.011, 0.016, 0.021, 0.026, and 0.031 from right to
left. The solid straight line is obtained at �c=0.021, where �xsat���−�c�−� with �=3.0.
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�v remains almost zero implying that the defect does not
alter the polymer energy.

Another interesting quantity in the finite system size is the
fluctuation of the ground-state energies,

�E�L,t� = ��E − Ē�2
1/2, �14�

where Ē denotes the mean energy averaged over the space.
The angular brackets denote the configurational average, i.e.,
the average over many realizations of the noise. Since the
energy is interpreted as the surface height of growth model,
the energy fluctuation �E�L , t� corresponds to the surface
width W�L , t�, the standard deviation of the height. The en-
ergy fluctuation �E�t� increases with t and becomes satu-
rated in large t limit. So �E�L , t� is as follows �24�:

�E�L,t� � �L�f�t/Lz�
t� if t � Lz

L� if t � Lz,
� �15�

where the scaling function f�x� is x� for x�1 and constant
for x�1. Without the defect ��=0�, the exponents �, �, and
z are connected by the relation z�=� and �+z=2 �21� which
comes from the invariance of the KPZ equation for the Gal-
ilean transform. Thus, there is only one independent expo-
nent that has to be determined. The exponents are known to
be �=1 /3 and z=3 /2 in d=1+1.

Here we also monitor �E�� , t� on a square lattice sub-
strate. It increases with the strength of the line defect �20�.
The inset of Fig. 4 shows that the saturation value �Esat���
seems to be almost independent of the defect strength � for
���c and it increases with � for ���c. To check the effect of
� we consider a relative quantity Q��� �20�,

Q��� �
��Esat����2 − ��Esat�0��2

��Esat�0��2 , �16�

where �Esat�0� is the saturation energy fluctuation at �=0. As
shown in Fig. 4, Q��� is almost zero for ��0.02 and it in-
creases with � for ��0.02. They are consistent with the pre-
vious results that there is a phase transition near �c�0.021.

III. SUMMARY

A directed polymer in random media with an attractive
defect in the middle of one-dimensional substrate is studied.
The end to end distance �x of the polymer is measured as a
function of the polymer length t and the defect strength �.
The contribution of the defect to �x is negligible for ���c,
so �x still increases with t, i.e., �x� t2/3. For ���c, �x
increases with t at the beginning and becomes saturated for
large t. There is a localization transition �the queuing transi-
tion in ASEP� at finite �c�0.021. The polymer is not local-
ized for small attractive defect. However, it is localized for
���c. Since there exists a mapping between the ASEP and
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FIG. 2. �a� �v as a function of

�−�c for arbitrary values �c

=0.011, 0.016, 0.021, 0.026, and
0.031 from right to left. The most
straight line is obtained at �c

=0.021, where �v���−�c�
 with

=2.76. �b� The plot of �v as a
function of L at �=0.021, where
the dashed line shows the power-
law behavior �v�L−x� with x�

=0.82.

-0.2 0 0.2 0.4 0.6 0.8

(ε − ε
c
) L

y

0.0

1.0

2.0

3.0

4.0

5.0

∆v
L

x ∆

FIG. 3. �Color online� Data collapse of �v following Eq. �13�
with x�=0.82, y=0.297, and �c=0.021 for L=257 �circles�, 513
�squares�, 1025 �diamonds�, 2049 �up triangles�, and 4097 �left
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FIG. 4. The plot of Q��� as a function of � from �Esat���. In the
inset, �E�� , t� is monitored as a function of t for L=4097 with �
=0.0,0.005,0.010, . . . ,0.060 from bottom to top.
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the DPRM, we would expect the queuing transition in the
ASEP. The �x obtained in a triangular structure depends on t
only. In principle, �xsat does not have any system size effect.
The polymer energy per unit length in square lattice depends
on both L and t. From the finite-size scaling of the mean
energy velocity in square lattice, we obtain 
=2.76, x�

=0.82, and y=0.297. Our value of y exponent 0.297 is a bit
higher than 0.253 in ASEP of Ref. �19�. The polymer energy
fluctuation data in the square lattice also support that there
exists a phase transition. Analytic works and larger simula-

tions are required to get more accurate values of the critical
exponents.
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